

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 1 of 11

This project that has received funding from the European Union’s Horizon 2020 - Research and Innovation

Framework Programme, H2020-FCT-2015, under grant agreement no 700381.

Analysis System for GAthered Raw Data

ASGARD

Instrument: Research and Innovation Action proposal

Thematic Priority: FCT-1-2015

Ref. Ares(2019)2904510 - 30/04/2019

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 2 of 11

D10.3. Large-scale multimedia indexing tools

Deliverable number D10.3

Version: 1.0

Delivery date: 30 April 2019

Dissemination level: OTHER

Classification level: PUBLIC

Status DRAFT

Nature: OTHER

Main author(s): Apostolos Axenopoulos, Michalis

Lazaridis

CERTH

Contributor(s):

DOCUMENT CONTROL
Version Date Author(s) Change(s)

0.1 20/03/2019 Apostolos Axenopoulos

(CERTH)

Structure, TOC.

0.2 20/03/2019 Apostolos Axenopoulos,

Michalis Lazaridis (CERTH)

First version

0.3 15/04/2019 Apostolos Axenopoulos,

Michalis Lazaridis (CERTH)

Ready for internal review

0.4 23/04/2019 Stephan Raaijmakers (TNO),

Ernesto La Mattina (ENG)

Internal Reviews

0.5 25/4/2019 Romaios Bratskas (ADITESS) Quality review of the deliverable

1.0 26/4/2019 Apostolos Axenopoulos,

Michalis Lazaridis (CERTH)

Final version

DISCLAIMER
Every effort has been made to ensure that all statements and information contained herein are accurate;
however, the Partners accept no liability for any error or omission in the same.

This document reflects only the view of its authors and the European Commission is not responsible for
any use that may be made of the information it contains.

© Copyright in this document remains vested in the Project Partners

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 3 of 11

Table of Contents
1. Introduction ... 4

1.1. Overview ... 4

1.2. Relation to other deliverables .. 4

1.3. Structure of the deliverable ... 5

1.4. Where to find more about this deliverable .. 6

2. Framework Description ... 7

2.1. Workflow description ... 7

2.2. Extraction of Binary Vector... 8

2.3. MongoDB vector indexing .. 9

3. Conclusions .. 10

3.1. Summary ... 10

3.2. Evaluation ... 10

3.3. Limitations and future work ... 11

Tables
Table 1 – Relation to other deliverables – receives inputs from.. 5

Table 2 – Relation to other deliverables – provides outputs to ... 5

Table 3 – References for the Container ... 6

Table 4 – Search times ... 10

Figures
Figure 1 – Generic workflow ... 7

Figure 2 – Binary hash extraction .. 8

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 4 of 11

1. Introduction

1.1. Overview

The DoA describes this deliverable as:

D10.3 – Large-scale multimedia indexing tools. [Month 32, Type: other, Dissemination level: PU]

The deliverable describes the work of subtask 10.2.2 of WP10, which aims to provide tools for large-scale

media indexing, search and retrieval. The work focuses on search-by-example tasks, i.e. to search for relevant

image, audio or video by using as query a sample image, audio or video, respectively. The typical search

procedure involves a vector comparison between the descriptor of the query sample with the descriptors of

all items within the database, using e.g. classical distance measures (Euclidean, Manhattan, etc.). However, as

the size of available data to search increases dramatically, the time for the above search process becomes

prohibitive. Therefore, more efficient approaches for media indexing are required. The contribution of this

task is twofold: i) it provides a state-of-the-art method for large-scale image indexing and search and ii) it

proposes a new add-on for MongoDB to support vector-based indexing and search, applicable to all media

types (e.g. image, audio, video).

1.2. Relation to other deliverables

This deliverable is related to the following other ASGARD deliverables:

Receives inputs from:

Deliv. # Deliverable title How the two deliverables are related

D5.2 Datasets Acquisition and/or creation It identifies and therefore provides all the

available, relevant datasets alongside with the

internal catalogue for various data sources and

metadata.

D5.3 Data Filtering and Interoperability Provides to this deliverable the standards, data

access and format alongside with the

organisational interface.

D5.4 Metadata Extraction and Augmentation Identifies relevant metadata attributes to enhance

data retrieval capabilities and improve the

description of the datasets provided to D10.3.

D6.1 Text Analysis Textual descriptions extracted from text analysis

can be used as input for large-scale indexing.

D6.2 Audio Analysis Audio descriptions extracted from audio analysis

can be used as input for large-scale indexing.

D6.3 Image Analysis Image descriptions extracted from image analysis

can be used as input for large-scale indexing.

D6.4 Video Analysis Video descriptions extracted from video analysis

can be used as input for large-scale indexing.

D9.1 Orchestration framework definition and It specifies all the characteristics and requirements

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 5 of 11

set-up. to be met from the tool presented in D10.3.

Table 1 – Relation to other deliverables – receives inputs from

Provides outputs to:

Deliv. # Deliverable title How the two deliverables are related

D7.5 Visual analytics framework and

techniques

Results from large-scale retrieval can be exploited

by visual analytics for efficient

presentation/visualisation.

D10.4 Continuous Integration & Common

Infrastructure, Tools and Resources

The output of D10.3 will be useful for D10.4 as it

will serve as a guideline to validate the developed

system, alongside with the evaluation of the

designed tools. The goal is to identify if the overall

large-scale indexing approach complies with the

defined requirements.

Table 2 – Relation to other deliverables – provides outputs to

1.3. Structure of the deliverable

This document includes the following sections:

• Section 1: The current introductory section. This section describes additionally all the links and

dependencies with other deliverables.

• Section 2: This is the main section, where the Large-scale media indexing framework is described,

which includes the implemented architecture, tools and their setup.

• Section 3: In this section, conclusions, limitations and future work are presented.

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 6 of 11

1.4. Where to find more about this deliverable

Title Type
SW

release
Brief description Where can it be found

Binary hasher

Source

code,

document

ation and

container

Image

V0.9

Source code, documentation and

complete image of the Binary hasher

tool that extracts binary hashes out of

images and video content.

ASGARD Gitlab Instance

[https://ci.tno.nl/gitlab

/ASGARD/demonstrato

r-wp10-

t2.2_image_hashing]

Mongo binary

hash indexing

Source

code,

document

ation and

container

Image

V0.9

Source code, documentation and

complete image of the MongoDB

branch that supports binary hash

indexing, search and retrieval.

ASGARD Gitlab Instance

[https://ci.tno.nl/gitlab

/ASGARD/demonstrato

r-wp10-

t2.2_Mongo_binary_ha

sh_indexing]

Table 3 – References for the Container

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 7 of 11

2. Framework Description

2.1. Workflow description

The workflow of the proposed approach is depicted in Figure 1. During the descriptor extraction step, the

input file is given to the Descriptor extractor. The input can be an image, video file, audio file or text, i.e. any

piece of media from which a multidimensional descriptor vector can be extracted. The descriptor extractor

extracts automatically low-level features from the file (e.g. shape, texture, colour characteristics from visual

content, audio-based features from audio content or text-based features from texts) represented as

multidimensional vectors. In case the descriptor vector values are real numbers, an additional step is required

to convert the real numbers to binary hashes. In this task, we have implemented a tool that extracts binary

descriptor vectors from images and is described in the following subsection. However, this tool can be

substituted by any image (or audio/video/text) descriptor extractor, provided that it conforms with the

development guidelines of ASGARD and that the output descriptor is a binary hash.

The next step, MongoDB with vector indexing support, has two operation modes:

- Ingestion: takes as input the binary hash of an image (from the previous step) and related metadata

and stores them to the index.

- Search and retrieval: the image or binary hash are given as input and the tool returns a list of the most

visually similar image records.

Figure 1 – Generic workflow

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 8 of 11

2.2. Extraction of Binary Vector

Given an image as input, the Descriptor Extractor computes the visual descriptors. Since the next step of

MongoDB vector indexing requires the descriptors to be binary hashes, an additional step of converting the

descriptors into binary hashes might be required if they are real numbers.

Several methodologies for extracting low-level image descriptors have been proposed in the literature, based

either on hand-crafted features or on machine learning, describing either the entire image or local regions and

specific objects within an image. In the context of this task, some of the most widely-used image descriptors

have been tested. A report on these methods is out of the scope of this deliverable. The descriptor extractor

that has been eventually implemented is based on a work presented in CVPR20151. The reasons for selecting

this approach are i) deep-learning-based image features pre-trained on ImageNet have been proven to be

more discriminative and ii) the proposed approach outputs directly binary vectors as descriptors, thus, the

additional step to create the binary hash is avoided.

The method is outlined in Figure 2. Module 1 involves the supervised pre-training on the large-scale ImageNet.

This step learns rich mid-level image representations. Module 2 focuses on fine-tuning the network with the

latent layer to simultaneously learn domain-specific feature representation and a set of hash-like function.

Finally, Module 3 performs the search-by-example image task, where images similar to the query are retrieved

following a hierarchical search process.

The output of Module 2 is a binary hash of length 48, which corresponds to the number of nodes h of the

1 Deep Learning of Binary Hash Codes for Fast Image Retrieval K. Lin, H.-F. Yang, J.-H. Hsiao, C.-S. Chen CVPR

Workshop (CVPRW) on Deep Learning in Computer Vision, DeepVision 2015, June 2015.

Figure 2 – Binary hash extraction

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 9 of 11

latent layer. Two different binary code lengths have been tested, h=48 and h=128. The size of the code length

is not always proportional to accuracy; in some cases, a larger binary hash is required to capture higher details,

while in some cases, more nodes of the latent layer may cause overfitting. During image retrieval, the coarse-

level search selects the subset of images from the database with a Hamming distance to the query hash lower

than a threshold, while the fine-level search re-ranks the subset of remaining images from the coarse step.

The supported image formats are .png, .jp(e)g, and .bmp. The concept is extended to support also video

frames. The supported video file formats are .mp4, .avi, .wmv and .mov.

The tool documentation includes detailed instructions on installing, using and testing the tool.

2.3. MongoDB vector indexing

Normally, fields that can be indexed in MongoDB are either single numbers, text or geospatial data (long, lat).

There is no support for indexing a descriptor vector, coming e.g. from an image. For addressing this need, we

use a two-step procedure: i) we convert descriptor vectors to binary hashes, which are then stored in a specific

field of the MongoDB document; ii) we index this field, using a specific index type, so that the documents are

later searchable based on the binary hash (and thus the descriptor vector) similarity. The first step is covered

by the method described in the previous subsection, while the second is addressed by the MongoDB vector

indexing, that has been introduced in the context of this subtask (T10.2.2).

The MongoDB vector indexing introduces a new index type, capable of indexing binary hashes and comparing

documents based on these hashes. The current master version is built on top of the r3.4.7 version of mongoDB.

The distance metric used for the binary hashing index is the Hamming distance. For binary strings a and b the

Hamming distance is equal to the number of ones in a XOR b.

The binary hashes are formatted as strings and can be placed in a document field. E.g.

{

 "_id": ObjectId("5aec22e800b881198b8e682a"),

 "bhash": "101011110011011101000101111010000100111011110010",

 ...

}

The length of the binary hash does not need to be specified. This tool, if combined with a binary hash extractor

(like the Binary Hashing tool), can be used as an out-of-the-box search engine.

The tool accepts requests exactly as a MongoDB instance, either through the standard port 27017 (same

docker network) or through the port 9010 (outside world). Any MongoDB API, driver or client, including a

MongoDB shell, can be used.

The tool documentation includes detailed instructions on installing, using and testing the tool.

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 10 of 11

3. Conclusions

3.1. Summary

The current work introduces a compact, minimal configuration, out-of-the-box framework for indexing, search

and retrieval of large amounts of media content.

The framework consists of two main parts:

• The Binary Hasher extracts binary hashes out of a media file.

• The MongoDB branch supports binary hash indexing, search and retrieval.

Two working modes can be distinguished:

• During the indexing phase, the user provides an image path, a video path or an image folder path. The

tool reads the files, extracts the binary hashes and creates records in the MongoDB.

• During the search phase, the user provides an image path and the tool performs similarity search

inside the MongoDB. The results are returned to the caller.

All interfaces are documented in detail in the ASGARD Gitlab, at the locations provided in Table 3.

3.2. Evaluation

The proposed framework is useful as an off-the-shelf, horizontally scalable, content-based search engine. The

combination of the docker service replication mechanism and the MongoDB replication and sharding

capabilities ensure data redundancy, availability and distribution with high throughput.

A series of tests has been conducted in order to evaluate the performance of the framework. The tests have

been conducted on a single mongo instance, without replica sets or sharding, so that the core performance of

the concept can be evaluated. The results of the tests are presented in the following table.

Number of images

(millions)

Avg. search time

(seconds)

1 0.8

2 1.3

3 1.9

4 2.4

5 2.9

Table 4 – Search times

We can see that the tool has a nearly linear (slightly below) behaviour to the number of images. This can be

significantly improved by using MongoDB’s replication/sharding mechanisms.

The proposed binary hash has been tested in three different image datasets, outperforming similar state-of-

D10.3 Large-scale multimedia indexing tools

Grant Agreement: 700381 Dissemination level: PUBLIC Page 11 of 11

the-art approaches. For quality evaluation results, please refer to the scientific paper, presented in Section

2.2.

3.3. Limitations and future work

The current implementation of the binary hasher covers image data. For covering also the cases of video, audio

and text data, different binary hashers need to be implemented.

There are currently two limitations:

• The new binary hash index cannot be used in the same query with a geospatial indexi.

• The WiredTiger storage engine is not supported. Only the MMAPV1 storage engineii is supported.

Both limitations are expected to be lifted in a future release.

i https://docs.mongodb.com/manual/geospatial-queries/

ii https://docs.mongodb.com/manual/core/storage-engines/

