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1. Introduction 

1.1. Overview 

The DoA describes this deliverable as: 

D10.3 – Large-scale multimedia indexing tools. [Month 32, Type: other, Dissemination level: PU] 

The deliverable describes the work of subtask 10.2.2 of WP10, which aims to provide tools for large-scale 

media indexing, search and retrieval. The work focuses on search-by-example tasks, i.e. to search for relevant 

image, audio or video by using as query a sample image, audio or video, respectively. The typical search 

procedure involves a vector comparison between the descriptor of the query sample with the descriptors of 

all items within the database, using e.g. classical distance measures (Euclidean, Manhattan, etc.). However, as 

the size of available data to search increases dramatically, the time for the above search process becomes 

prohibitive. Therefore, more efficient approaches for media indexing are required. The contribution of this 

task is twofold: i) it provides a state-of-the-art method for large-scale image indexing and search and ii) it 

proposes a new add-on for MongoDB to support vector-based indexing and search, applicable to all media 

types (e.g. image, audio, video).  

1.2. Relation to other deliverables 

This deliverable is related to the following other ASGARD deliverables: 

Receives inputs from: 

Deliv. # Deliverable title How the two deliverables are related 

D5.2 Datasets Acquisition and/or creation It identifies and therefore provides all the 

available, relevant datasets alongside with the 

internal catalogue for various data sources and 

metadata. 

D5.3 Data Filtering and Interoperability Provides to this deliverable the standards, data 

access and format alongside with the 

organisational interface. 

D5.4 Metadata Extraction and Augmentation Identifies relevant metadata attributes to enhance 

data retrieval capabilities and improve the 

description of the datasets provided to D10.3. 

D6.1 Text Analysis Textual descriptions extracted from text analysis 

can be used as input for large-scale indexing. 

D6.2 Audio Analysis Audio descriptions extracted from audio analysis 

can be used as input for large-scale indexing. 

D6.3 Image Analysis Image descriptions extracted from image analysis 

can be used as input for large-scale indexing. 

D6.4 Video Analysis Video descriptions extracted from video analysis 

can be used as input for large-scale indexing. 

D9.1 Orchestration framework definition and It specifies all the characteristics and requirements 
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set-up. to be met from the tool presented in D10.3.  

Table 1 – Relation to other deliverables – receives inputs from 

Provides outputs to: 

Deliv. # Deliverable title How the two deliverables are related 

D7.5 Visual analytics framework and 

techniques 

Results from large-scale retrieval can be exploited 

by visual analytics for efficient 

presentation/visualisation. 

D10.4 Continuous Integration & Common 

Infrastructure, Tools and Resources 

The output of D10.3 will be useful for D10.4 as it 

will serve as a guideline to validate the developed 

system, alongside with the evaluation of the 

designed tools. The goal is to identify if the overall 

large-scale indexing approach complies with the 

defined requirements. 

Table 2 – Relation to other deliverables – provides outputs to 

1.3. Structure of the deliverable 

This document includes the following sections: 

• Section 1: The current introductory section. This section describes additionally all the links and 

dependencies with other deliverables. 

• Section 2:  This is the main section, where the Large-scale media indexing framework is described, 

which includes the implemented architecture, tools and their setup. 

• Section 3: In this section, conclusions, limitations and future work are presented. 
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1.4.  Where to find more about this deliverable 

Title Type 
SW 

release 
Brief description Where can it be found 

Binary hasher 

Source 

code, 

document

ation and 

container 

Image 

V0.9 

Source code, documentation and 

complete image of the Binary hasher 

tool that extracts binary hashes out of 

images and video content. 

ASGARD Gitlab Instance 

[https://ci.tno.nl/gitlab

/ASGARD/demonstrato

r-wp10-

t2.2_image_hashing] 

Mongo binary 

hash indexing 

Source 

code, 

document

ation and 

container 

Image 

V0.9 

Source code, documentation and 

complete image of the MongoDB 

branch that supports binary hash 

indexing, search and retrieval. 

ASGARD Gitlab Instance 

[https://ci.tno.nl/gitlab

/ASGARD/demonstrato

r-wp10-

t2.2_Mongo_binary_ha

sh_indexing] 

Table 3 – References for the Container 
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2. Framework Description 

2.1. Workflow description 

The workflow of the proposed approach is depicted in Figure 1. During the descriptor extraction step, the 

input file is given to the Descriptor extractor. The input can be an image, video file, audio file or text, i.e. any 

piece of media from which a multidimensional descriptor vector can be extracted. The descriptor extractor 

extracts automatically low-level features from the file (e.g. shape, texture, colour characteristics from visual 

content, audio-based features from audio content or text-based features from texts) represented as 

multidimensional vectors. In case the descriptor vector values are real numbers, an additional step is required 

to convert the real numbers to binary hashes. In this task, we have implemented a tool that extracts binary 

descriptor vectors from images and is described in the following subsection. However, this tool can be 

substituted by any image (or audio/video/text) descriptor extractor, provided that it conforms with the 

development guidelines of ASGARD and that the output descriptor is a binary hash.   

The next step, MongoDB with vector indexing support, has two operation modes:  

- Ingestion: takes as input the binary hash of an image (from the previous step) and related metadata 

and stores them to the index.  

- Search and retrieval: the image or binary hash are given as input and the tool returns a list of the most 

visually similar image records.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1 – Generic workflow 
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2.2. Extraction of Binary Vector 

Given an image as input, the Descriptor Extractor computes the visual descriptors. Since the next step of 

MongoDB vector indexing requires the descriptors to be binary hashes, an additional step of converting the 

descriptors into binary hashes might be required if they are real numbers.  

Several methodologies for extracting low-level image descriptors have been proposed in the literature, based 

either on hand-crafted features or on machine learning, describing either the entire image or local regions and 

specific objects within an image. In the context of this task, some of the most widely-used image descriptors 

have been tested. A report on these methods is out of the scope of this deliverable. The descriptor extractor 

that has been eventually implemented is based on a work presented in CVPR20151. The reasons for selecting 

this approach are i) deep-learning-based image features pre-trained on ImageNet have been proven to be 

more discriminative and ii) the proposed approach outputs directly binary vectors as descriptors, thus, the 

additional step to create the binary hash is avoided.  

The method is outlined in Figure 2. Module 1 involves the supervised pre-training on the large-scale ImageNet. 

This step learns rich mid-level image representations. Module 2 focuses on fine-tuning the network with the 

latent layer to simultaneously learn domain-specific feature representation and a set of hash-like function. 

Finally, Module 3 performs the search-by-example image task, where images similar to the query are retrieved 

following a hierarchical search process. 

 

 

The output of Module 2 is a binary hash of length 48, which corresponds to the number of nodes h of the 

                                                             

1 Deep Learning of Binary Hash Codes for Fast Image Retrieval K. Lin, H.-F. Yang, J.-H. Hsiao, C.-S. Chen CVPR 

Workshop (CVPRW) on Deep Learning in Computer Vision, DeepVision 2015, June 2015. 

Figure 2 – Binary hash extraction 
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latent layer. Two different binary code lengths have been tested, h=48 and h=128. The size of the code length 

is not always proportional to accuracy; in some cases, a larger binary hash is required to capture higher details, 

while in some cases, more nodes of the latent layer may cause overfitting. During image retrieval, the coarse-

level search selects the subset of images from the database with a Hamming distance to the query hash lower 

than a threshold, while the fine-level search re-ranks the subset of remaining images from the coarse step. 

The supported image formats are .png, .jp(e)g, and .bmp.  The concept is extended to support also video 

frames. The supported video file formats are .mp4, .avi, .wmv and .mov. 

The tool documentation includes detailed instructions on installing, using and testing the tool. 

 

2.3. MongoDB vector indexing 

Normally, fields that can be indexed in MongoDB are either single numbers, text or geospatial data (long, lat). 

There is no support for indexing a descriptor vector, coming e.g. from an image. For addressing this need, we 

use a two-step procedure: i) we convert descriptor vectors to binary hashes, which are then stored in a specific 

field of the MongoDB document; ii) we index this field, using a specific index type, so that the documents are 

later searchable based on the binary hash (and thus the descriptor vector) similarity. The first step is covered 

by the method described in the previous subsection, while the second is addressed by the MongoDB vector 

indexing, that has been introduced in the context of this subtask (T10.2.2).  

The MongoDB vector indexing introduces a new index type, capable of indexing binary hashes and comparing 

documents based on these hashes. The current master version is built on top of the r3.4.7 version of mongoDB. 

The distance metric used for the binary hashing index is the Hamming distance. For binary strings a and b the 

Hamming distance is equal to the number of ones in a XOR b.  

The binary hashes are formatted as strings and can be placed in a document field. E.g.  

{ 

 "_id": ObjectId("5aec22e800b881198b8e682a"),  

 "bhash": "101011110011011101000101111010000100111011110010",  

 ... 

} 

The length of the binary hash does not need to be specified. This tool, if combined with a binary hash extractor 

(like the Binary Hashing tool), can be used as an out-of-the-box search engine. 

The tool accepts requests exactly as a MongoDB instance, either through the standard port 27017 (same 

docker network) or through the port 9010 (outside world). Any MongoDB API, driver or client, including a 

MongoDB shell, can be used. 

The tool documentation includes detailed instructions on installing, using and testing the tool. 

 

  



 

D10.3 Large-scale multimedia indexing tools 

Grant Agreement: 700381 Dissemination level: PUBLIC Page 10 of 11 

 

3. Conclusions 

3.1. Summary 

The current work introduces a compact, minimal configuration, out-of-the-box framework for indexing, search 

and retrieval of large amounts of media content.  

 

The framework consists of two main parts: 

• The Binary Hasher extracts binary hashes out of a media file. 

• The MongoDB branch supports binary hash indexing, search and retrieval. 

 

Two working modes can be distinguished: 

• During the indexing phase, the user provides an image path, a video path or an image folder path. The 

tool reads the files, extracts the binary hashes and creates records in the MongoDB. 

• During the search phase, the user provides an image path and the tool performs similarity search 

inside the MongoDB. The results are returned to the caller. 

All interfaces are documented in detail in the ASGARD Gitlab, at the locations provided in Table 3. 

 

3.2. Evaluation 

The proposed framework is useful as an off-the-shelf, horizontally scalable, content-based search engine. The 

combination of the docker service replication mechanism and the MongoDB replication and sharding 

capabilities ensure data redundancy, availability and distribution with high throughput. 

A series of tests has been conducted in order to evaluate the performance of the framework. The tests have 

been conducted on a single mongo instance, without replica sets or sharding, so that the core performance of 

the concept can be evaluated. The results of the tests are presented in the following table. 

Number of images 

(millions) 

Avg. search time 

(seconds) 

1 0.8 

2 1.3 

3 1.9 

4 2.4 

5 2.9 

Table 4 – Search times 

We can see that the tool has a nearly linear (slightly below) behaviour to the number of images. This can be 

significantly improved by using MongoDB’s replication/sharding mechanisms. 

The proposed binary hash has been tested in three different image datasets, outperforming similar state-of-



 

D10.3 Large-scale multimedia indexing tools 

Grant Agreement: 700381 Dissemination level: PUBLIC Page 11 of 11 

 

the-art approaches. For quality evaluation results, please refer to the scientific paper, presented in Section 

2.2. 

 

3.3. Limitations and future work 

The current implementation of the binary hasher covers image data. For covering also the cases of video, audio 

and text data, different binary hashers need to be implemented. 

There are currently two limitations: 

• The new binary hash index cannot be used in the same query with a geospatial indexi. 

• The WiredTiger storage engine is not supported. Only the MMAPV1 storage engineii is supported. 

Both limitations are expected to be lifted in a future release. 

 

i https://docs.mongodb.com/manual/geospatial-queries/ 

 
ii https://docs.mongodb.com/manual/core/storage-engines/ 

 

                                                             


